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The processes of methanogenesis and methane
oxidation are quantitatively important components of
the global carbon cycle on Earth, and they have most
probably played this role over the whole period of
existence of the biosphere on our planet [1]. Methano�
genic microorganisms transform to methane about 2%
of the total carbon fixed by phototrophs [1]. From 500
to 600 Tg of methane enters the atmosphere annually
[2, 3], and about 70% of this amount is a result of the
activity of modern microbial communities [4].

Detection and identification of methanogenic
archaea in complex microbial communities using their
16S rRNA gene sequences as a marker is hindered by
the fact that this physiological group is not monophyl�
etic [5, 6]. Therefore, the attention of several research�
ers was attracted by the gene encoding the α subunit of
methyl�coenzyme M reductase (mcrA) [7, 8]. The
results of numerous studies confirmed the efficiency of
using this functional and phylogenetic marker for
assessment of the diversity and distribution of metha�
nogens [9, 10].

For certain thermal ecotopes, namely for oilfields,
hydrothermal sediments, and black smokers, a num�
ber of studies of the diversity and distribution of meth�
anogenic archaea have already been carried out [11–

15]. Terrestrial hot springs remain, however, poorly
studied in this respect.

The first evidence of the presence of methanogens
in terrestrial hot springs was obtained in the course of
studies of these habitats in the Yellowstone National
Park [16]. Subsequent studies of Icelandic hydrother�
mal vents resulted in the isolation of two hyperthermo�
philic hydrogenotrophic methanogens representing a
new family, Methanothermaceae: Methanothermus fer�
vidus and M. sociabilis [17, 18]; they were subsequently
shown to be endemic to this island [15]. In the hot
springs of Kamchatka, intense methanogenesis was
recorded by radioisotopic methods [19, 20]. In all of
the hydrogen�utilizing enrichment cultures obtained
from the Kamchatkan hot springs where methane for�
mation was detected, growth of thin hydrogenotrophic
rods phenotypically similar to Methanothermobacter
representatives was observed [21]. Moreover, in 1982
Nozhevnikova and Yagodina reported the isolation
from thermal lake sediment of a new filamentous
organism incapable of hydrogen utilization and grow�
ing on acetate with methane formation, Methanothrix
thermoacetophila [22]. Thus, currently, the diversity of
methanogens isolated from terrestrial hot springs is
restricted to representatives of the genera Methano�
thermobacter, Methanothrix, and Methanothermus.

The goal of the present work was molecular detec�
tion, identification, and evaluation of the abundance
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of methanogenic archaea in terrestrial hot springs of
Kamchatka Peninsula (Russia) and Sa~o  Miguel
Island (Portugal).

MATERIALS AND METHODS

Site of sampling and sample collection and storage.
Samples were collected in Uzon Caldera and
Geyser Valley (Kamchatka Peninsula, Russia) and
Sa~o  Miguel Island (the Azores). Samples of water,
sediments, silts, microbial mats, and biofilms from
terrestrial hot spring were collected into 15� or 50�mL
Falcon�type plastic tubes or 60�mL glass flasks. The
tubes and flasks were completely filled with the sam�
ples, tightly closed, and transported to the laboratory,
where they were stored at 4°C prior to analyses.

Molecular genetic methods. DNA from the samples
was isolated by standard methods [23, 24]. For DNA
isolation, the sample was resuspended in an equal vol�
ume of lysing solution (0.15 M NaCl, 0.1 M
Na2EDTA, pH 8.0) containing 15 mg/mL of
lysozyme, and the mixture was processed using glass
beads of various diameters and a FastPrep® 24 homog�
enizer (MP Biomedicals, United States) for sample
homogenization and cell disruption. The homoge�
nized mixture was incubated at 37°C for 40 min with
thorough shaking every 10 min. After that, the mixture
was supplemented with a buffer (0.1 M NaCl and 0.5
M Tris�HCl, pH 8.0) in an amount equal to that of the
initial solution and with sodium dodecyl sulfate to a
concentration of 0.5% and Proteinase K to a concen�
tration of 100 μg/mL). The resulting mixture was
incubated for 40 min at 50°C and then for 10 min at
60°C. The lysis efficiency was estimated by cell count�
ing under a phase contrast microscope. DNA was
extracted from the lysate by standard phenol–chloro�
form extraction and precipitated with 96% ethanol.
The precipitate was dissolved in TE buffer (10 mM
Tris�HCl, 1 mM EDTA, pH 8.0). To remove the RNA
admixtures in the resulting DNA solution, it was incu�
bated with 0.2 mg/mL of RNase A for 2 h at 37°C. If
necessary, DNA was also purified with a Wizard®

DNA Clean�Up System kit (Promega, United States),
intended for large DNA fragments. Qualitative and
quantitative assessment of DNA preparations was per�
formed on a DropSense�96® spectrophotometer
(Trinean, Belgium).

PCR amplification, gel electrophoresis, cloning,
denaturing gradient gel electrophoresis (DGGE), and
quantitative PCR were carried out according to com�
monly accepted methods [23, 25–27]. Primary
screening for methanogens was performed using two
primer systems specific to the mcrA gene: MLf–MLr
[9] and mlas–mcrA�rev [28].

Quantitative PCR was carried out using the SYBR
Green I® intercalating dye and the ready�to�use
qPCRmix�HS SYBR PCR master mix (Evrogen,
Russia) on a StepOnePlus® Real�Time PCR System

(Life Technologies, United States). The correlation
coefficients were not lower than 0.97 for all of the cal�
ibration curves, and the reaction efficiencies were not
lower than 70%.

Quantitative PCR that was performed in order to
estimate the abundance of methanogenic archaea,
total archaea, and bacteria in samples from the Ther�
mophilny, Zavarzin, and 2012 hot springs used the
primer systems mlas (F)–mcrA�rev, Arch931F–
Arch1100R, and Bact338F–Bact907R, respectively
[26, 29–31].

Analysis of the newly determined nucleotide
sequences. The nucleotide sequences were edited and
assembled using BioEdit 7.1.3 [32], translated into
amino acid sequences, aligned with ClustalW [33],
and combined into representative operational taxo�
nomic units (OTUs) with cd�hit [34]. The OTUs
obtained were checked for chimeras using Pintail [35].
Phylogenetic reconstruction was performed with ARB
[36] using the Maximum Likelihood algorithm and
nonparametric bootstrap analysis of 100 replicates.

RESULTS

At the first stage of this work, we performed phylo�
genetic reconstruction of methanogenic microorgan�
isms based on the mcrA gene. More than six thousand
complete and partial translated amino acid sequences
corresponding to the mcrA gene were retrieved from
GenBank and FunGene databases and combined into
366 representative OTUs. Of them, 211 represented
uncultured microorganisms and 155 represented cul�
tured methanogenic species (Fig. 1). This made possi�
ble reliable determination of the phylogenetic position
of the microorganisms detected in the present work by
phylogenetic analysis independent of a particular set
of reference sequences.

At the next stage of the work, we analyzed samples
from 16 hot springs located on Kamchatka Peninsula
(Russia) and Sa~o Miguel Island  (Portugal) and exhib�
iting diverse physicochemical characteristics (table).
Sampled were microbial mats and biofilms, silts, sedi�
ments, and water of the hot springs. Primary screening
for the mcrA genes by PCR with the mcrA�specific
primer pairs MLf–MLr and mlas–mcrA�rev yielded
amplicons for 12 of the 16 investigated hot springs
(table). The amplicons were separated by DGGE, and
the resulting bands were sequenced. After translation,
the sequences pertaining to particular samples were
combined into OTUs with the amino acid sequence
identity threshold of 95% (table).

Further phylogenetic analysis, performed by
repeated construction of the global McrA tree (includ�
ing the OTUs revealed in the present study) showed
that these OTUs represented several taxonomic groups
of cultivated methanogens (Methanothrix, Methano�
cellales, Methanobacteriales, and Methanomassiliicoc�
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cales) and the MCR�2a cluster of uncultivated micro�
organisms [37] (Fig. 1).

The highest methanogen diversity was revealed in
two Kamchatkan hot springs: 2012 (Geyser Valley)
and Thermophilny (Uzon Caldera). In these springs,
the water had pH ~6 and temperatures of 60 and 70°C,
respectively. For samples from these springs, as well as
for the sample from Zavarzin spring, quantitative PCR
was carried out to evaluate the abundance of bacteria,
total archaea, and methanogenic archaea (Fig. 2).
This analysis showed methanogens to constitute a
minor portion of the microbial populations. Their
highest abundance, which was recorded in the 2012
spring, did not exceed 0.1% of the total prokaryotic
population.

DISCUSSION

Our large�scale reconstruction of the phylogeny of
methanogenic archaea, which used over 6000 trans�
lated nucleotide sequences of the mcrA genes, allowed
us to bring in order the currently available voluminous
data on the mcrA�based detection of uncultured
microorganisms and to carry out phylogenetic analysis
independent of a particular set of reference sequences.
No discrepancies were revealed between the phyloge�
netic positions of cultured methanogens determined
using the mcrA�based and 16S rRNA gene�based
approaches, which demonstrates lack mcrA horizontal
transfer events and confirms the high efficiency of
using this functional and phylogenetic marker in stud�

ies of the diversity and distribution of methanogenic
and methanotrophic archaea.

Previous radioisotopic studies revealed processes of
lithotrophic and aceticlastic methanogenesis in hot
springs of the Uzon Caldera with temperatures of 55–
96°C and pH 4.2–7.0 [19–21]. Enrichment cultures
that produced methane from hydrogen, acetate, and
methanol were obtained in wide ranges of temperature
and pH [19]. Representatives of the genus Methano�
thermobacter were assumed to be the main agents of
lithotrophic methanogenesis at 60–70°C and pH 7.0–
8.5 [21]. These methanogens are also components of
thermophilic syntrophic associations that utilize
methanol [38, 39, and unpublished data of A.Y. Mer�
kel].

The results of our present work with samples taken
from terrestrial hot springs of Kamchatka and Sa~o
Miguel Island show that the gene encoding the α sub�
unit of methyl�coenzyme M reductase is present in the
microbial communities of the springs with tempera�
tures from 51 to 89°C and neutral or slightly acidic
pH. The mcrA amplicons were obtained for 12 of the
16 hot springs investigated. Apart from members of the
genera Methanothermobacter and Methanothrix, found
earlier in Kamchatkan hot springs, we revealed the
mcrA genes of methanogenic archaea of the orders
Methanocellales and Methanomassiliicoccales and of
uncultured microorganisms of the order Methanobac�
teriales. However, the results of quantitative PCR show
low abundance of methanogens in the springs studied.

In our study, representatives of Methanocellales
were detected only in a sample from the Thermophilny
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Fig. 1. Phylogenetic tree constructed based on the analysis of amino acid sequences of the α subunit of methyl�
coenzyme M reductase, including OTUs revealed in the present work. The tree was constructed with ARB software using the
Maximum Likelihood algorithm and bootstrap analysis of 100 alternative trees (values below 50% are not shown). On the right,
black squares arranged in a tabular form indicate the detection of particular groups in particular samples. The numerals in the
squares show OTU numbers. Designations of the columns are spring designations or abbreviated spring names (Th, Thermo�
philny; Z, Zavarzin; B(p), Bourlyashchy (pool); B(b), Bourlyashchy (brook); u.g., underwater grotto; K, Kukhonny).
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spring, where they shared the econiche with represen�
tatives of the genera Methanobacterium and Methano�
thermobacter and with uncultured methanogens of the
MCR�2a cluster. The sample was taken in the hottest
site of the spring: near the vent, where the temperature
was 72°C. Inflow of surface waters carrying meso�
philic organisms to this site is hardly possible; there�
fore, it may be assumed that the order Methanocellales
includes thermophilic species. Earlier, representatives
of this order were detected in rice fields and were then
isolated therefrom; these isolates are mesophilic
hydrogenotrophic methanogens [40–42]. In hot
springs, Methanocellales representatives have never
before been detected.

Representatives of the order Methanomassiliicoc�
cales were detected by us in three Kamchatkan hot
springs with temperatures of 52–58°C. Earlier, Meth�
anomassiliicoccales phylotypes were detected in ter�
mite and cockroach guts and mammal intestinal tracts
[43]. Methanomassiliicoccus luminyensis, a representa�
tive of this order isolated in a pure culture, was
obtained from a human feces sample; it produces
methane in the course of growth on methanol in the

presence of hydrogen [44]. An analogous type of
metabolism is featured by another representative of
this order isolated from the activated sludge of a ther�
mophilic (55°C) methanogenic reactor and described
as Candidatus “Methanogranum caenicola” [45].
Thus, the order Methanomassiliicoccales includes
thermophilic methanogens, which suggests that
occurrence of the representatives of this order in hot
springs is not accidental. However, the substrate uti�
lized by these organisms in their natural thermal habi�
tats remains unclear.

The MCR�2a cluster of uncultured archaea is
among the deepest phylogenetic lineages of microor�
ganisms possessing methyl�coenzyme M reductase
(Fig. 1). Unlike other groups of methanogens, which
we detected only in particular springs, members of the
MCR�2a cluster were found in all of the springs where
we detected mcrA genes (Fig. 1); these springs had
temperatures of 49–80°C and pH 5.5–7.7 (table).
Earlier, such mcrA genes were also found in the Bour�
lyashchy pool, the temperature of which was 87°C at
the moment of sampling [46]. These results suggest
that representatives of this phylogenetic cluster are

Characteristics of the terrestrial hot springs studied in this work

Spring name
or designation Sample type Geographical location T, °C pH mcrA*

Thermophilny Gray films

K
am

ch
at

ka
 P

en
in

su
la

U
zo

n
 C

al
de

ra

East thermal field

72 6.3 + (5)

Zavarzin Mat 57 6.2 + (2)

Treshchinny Black silt 74 6.5 –

1831 White films 77 6.5 + (2)

Bourlyashchy (pool) Silt

Central thermal field

89 6.0 + (1)

Bourlyashchy (brook) Mat 52 7.7 + (2)

Underwater grotto Silt 79 5.7 + (1)

Kukhonny Silt Lake Vosmerka 51 5.9 + (1)

2012 Films
Geyser Valley

58 5.7 + (6)

2009 Silt 91 7.9 –

2202 Silt

São Miguel Island, Portugal

80 7.5 + (1)

2203 Silt 49 2 –

2205 Black silt 66 6.5 + (2)

2209 Films 74 5.7 + (2)

2210 Grayish�green mat 61 6.5 –

2213 White films 75 5.5 + (1)

* The positive or negative PCR result is shown; in parentheses is the number of OTUs detected.
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widespread in ecosystems associated with geothermal
activity. Moreover, analysis of the GenBank database
showed that representatives of the MCR�2 cluster have
been detected in diffuse fluids of deep�sea hydrother�
mal vents [47], subsurface ecosystems [48], mud vol�
canos [49], and acidic peat and anaerobic digesters
[37], i.e., both in thermal and moderate�temperature
environments [47].

Thus, our study of the occurrence and diversity of
methanogenic archaea in terrestrial hot springs
showed the presence of members of this group in most
of the springs studied. In these habitats, diverse elec�
tron acceptors are available, which favors other physi�
ological groups of microorganisms competing for the
substrate. This fact most probably explains the low cell
number of methanogens in thermal environments of
volcanic origin. Methanogens, however, are a perma�
nent component of the microbial population. This
conclusion is valid, first of all, for representatives of
the uncultured MCR�2a cluster. Metagenomic analy�
sis of environmental samples and enrichment cultures
is to shed light on the metabolism of these organisms,
promoting further attempts of their laboratory cultiva�
tion.
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